目的 松茸中砷含量很高且含有不同的砷形态,包括:砷甜菜碱(AsB)、砷胆碱 (AsC)、三价砷(AsⅢ)、五价砷(AsⅤ)、一甲基砷(MMA)、二甲基砷(DMA)、三甲基氧化砷 (TMAO) 和砷糖。然而,有机砷化合物被认为毒性较小,甚至无毒,所以总砷含量不能提供关于其毒性的全部有效信息,需分析其具体的砷酸盐形态。方法 我们采用了基于HPLC耦合电感耦合等离子体质谱(ICP-MS)的优化分析方案来分析松茸中的As种类。使用含有5和100 mmol·L-1的(NH4)2CO3的混合流动相,通过DionexIonPacTM AS7色谱柱与ICP-MS检测器进行目标As物种的分离。结果 经过优化的HPLC色谱条件在15 min内实现了目标As物种的分离,并具有良好的分辨率。在松茸中检测到的主要砷形态是无毒的AsB。结论 现行中国国家标准GB2762-2017以总砷含量为质量标准。结果表明,将无机砷含量作为质量标准可能更为合理。
Abstract
OBJECTIVE Tricholoma matsutake contain high arsenic and different arsenic forms including: arsenobetaine (AsB), arsenocholine (AsC), trivalent arsenic (AsⅢ), pentavalent arsenic (AsⅤ), monomethylarsenic (MMA), dimethylarsenic (DMA), trimethylarsenic oxide (TMAO) and arsenose. However, organic arsenic compounds are considered to be less toxic or even non-toxic, so the total arsenic content does not provide all valid information on their toxicity and needs to be analysed for its specific arsenate form. METHODS An optimised analytical protocol based on HPLC coupled with ICP-MS was used to analyse As species in Tricholoma matsutake. A mixed mobile phase containing 5 mmol·L-1 and 100 mmol·L-1 of (NH4)2CO3 was used for the separation of the target As species via a DionexIonPacTM AS7 column with an ICP-MS detector. RESULTS The optimised HPLC chromatographic conditions achieved separation of the target As species within 15 minutes with good resolution. The predominant form of arsenic detected in Matsutake was the non-toxic arsenic betaine (AsB). CONCLUSIONS The existing Chinese national standard GB2762-2017 take total arsenic content as the quality standard. The results suggest that considering inorganic arsenic content as the quality standard may be more reasonable.
关键词
松茸 /
高效液相色谱法 /
电感耦合等离子体质谱 /
无机砷
{{custom_keyword}} /
Key words
Tricholoma matsutake /
HPLC /
ICP-MS /
inorganic as species
{{custom_keyword}} /
中图分类号:
R282
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHEN S, GUO Q, LIU L. Determination of arsenic species in edible mushrooms by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry [J]. Food Anal Methods, 2017, 10(3): 740-748.
[2] WANG Y, YU F Q, ZHANG C X, et al. Tricholoma matsutake: an edible mycorrhizal mushroom of high socioeconomic relevance in China [J]. Revistamexicana de micología, 2017, 46: 55-61.
[3] LI T, WANG Y, ZHANG J, et al. Trace element content of Boletus tomentipes mushroom collected from Yunnan, China [J]. Food Chem, 2011, 127(3): 1828-1830.
[4] RÁCZ L, PAPP L, PROKAI B, et al. Trace element determination in cultivated mushrooms: an investigation of manganese, nickel, and cadmium intake in cultivated mushrooms using ICP atomic emission [J]. Microchem J, 1996, 54(4): 444-451.
[5] SOEROES C, KIENZL N, IPOLYI I, et al. Arsenic uptake and arsenic compounds in cultivated agaricus bisporus [J]. Food Control, 2005, 16(5): 459-464.
[6] KOMOROWICZ I, SAJNÓG A, BARAÓKIEWICZ D. Total arsenic and arsenic species determination in Freshwater Fish by ICP-DRC-MS and HPLC/ICP-DRC-MS Techniques [J]. Molecules, 2019, 24(3):607.
[7] SMITH P G, KOCH I, REIMER K J. Arsenic speciation analysis of cultivated white button mushrooms (Agaricus bisporus) using high-performance liquid chromatography-inductively coupled plasma mass spectrometry, and X-ray absorption spectroscopy [J]. Environ Sci Technol, 2007, 41(20): 6947-6954.
[8] FALANDYSZ J, BOROVIKA J. Macro and trace mineral constituents and radionuclides in mushrooms: health benefits and risks [J]. Appl Microbiol Biotechnol, 2013, 97(2): 477-501
[9] COCCHI L, VESCOVI L, PETRINI L E, et al. Heavy metals in edible mushrooms in Italy [J]. Food Chem, 2006, 98(2): 277-284.
[10] GONZÁLVEZ A, LLORENS A, CERVERA M L, et al. Non-chromatographic speciation of inorganic arsenic in mushrooms by hydride generation atomic fluorescence spectrometry [J]. Food Chem, 2009, 115(1): 360-364.
[11] MELGAR M J, ALONSO J, GARCíA M A. Total contents of arsenic and associated health risks in edible mushrooms, mushroom supplements and growth substrates from Galicia (NW Spain)[J]. Food Chem Toxicol, 2014, 73: 44-50.
[12] OUZOUNI P K, PETRIDIS D, KOLLER W D, et al. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece [J]. Food Chem, 2009, 115(4): 1575-1580.
[13] ZHENG M Z, CAI C, HU Y, et al. Spatial distribution of arsenic and temporal variation of its concentration in rice [J]. New Phytol, 2011, 189(1): 200-209.
[14] FELDMANN J, KRUPP E M. Critical review or scientific opinion paper: arsenosugars--a class of benign arsenic species or justification for developing partly speciated arsenic fractionation in foodstuffs [J]. Anal Bioanal Chem, 2011, 399(5): 1735-1741.
[15] NEARING M M, KOCH I, REIMER K J. Arsenic speciation in edible mushrooms [J]. Environ Sci Technol, 2014, 48(24): 14203-14210.
[16] CARBONELL-CAPELLA J M, BUNIOWSKA M, BARBA F J, et al. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review [J]. Compr Rev Food Sci Food Safe, 2014, 13(2): 155-171.
[17] RUZIK L, WOJCIESZEK J. In vitro digestion method for estimation of copper bioaccessibility in Açaí berry [J]. Monatsh Chem, 2016, 147(8): 1429-1438.
[18] GB 2762-2017 National Food Safety Standard Limits of Contaminants in Food(食品安全国家标准-食品中污染物限量)[S]. 2017:7.
[19] YANG Y, LIN H L, CHEN H J, et al. Simultaneous determination of six arsenic forms in seafood by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Strait J Prevent Med(海峡预防医学杂志), 2018, 24(2):7-9,32.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点研发计划项目资助(2017YFC1601101)
{{custom_fund}}